

FDS8670 30V N-Channel PowerTrench[®] MOSFET

General Description

This device has been designed specifically to improve the efficiency of DC-DC converters. Using new techniques in MOSFET construction, the various components of gate charge and capacitance have been optimized to reduce switching losses. Low gate resistance and very low Miller charge enable excellent performance with both adaptive and fixed dead time gate drive circuits. Very low Rds(on) has been maintained to provide an extremely versatile device.

Applications

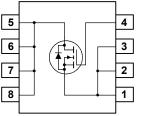
- High Efficiency DC-DC Converters:
 - Notebook Vcore Power Supply
 - Telecom Brick Synchronous Rectifier
 - Multi purpose Point Of Load

January 2008

n

FDS8670 30V N-Channel PowerTrench[®] MOSFET


Features


• 21 A, 30 V Max $R_{DS(ON)}$ = 3.7 m Ω @ V_{GS} = 10 V

Max $R_{DS(ON)}$ = 5.0 m Ω @ V_{GS} = 4.5 V

- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$ and gate charge
- Minimal Qgd (5.5 nC typical)
- 100% R_G tested (0.9 Ω typical)
- 100% UIL tested
- RoHS Compliant

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Sou	rce Voltage		30	V
V _{GSS}	Gate-Sour	ce Voltage		±20	V
I _D	Drain Curr	ent – Continuous	(Note 1a)	21	A
		 Pulsed 		105	
PD	Power Dis	sipation	(Note 1a)	2.5	W
			(Note 1b)	1.2	
			(Note 1c)	1	
Eas	Single Pu	se Avalanche Energy	(Note 3)	433	mJ
T _J , T _{STG}	Operating	and Storage Junction Ter	nperature Range	-55 to +150	
R _{θJA}	Thermal R	cteristics resistance, Junction-to-An	、 <i>,</i>	50	°C/W
R _{0JC}	Thermal Resistance, Junction-to-Case (Note 1)			25	
Packag	e Markir	ng and Ordering	Information		
Device Marking		Device	Reel Size	Tape width	Quantity
FDS8670		FDS8670	13"	12mm	2500 units

©2008 Fairchild Semiconductor Corporation

FDS8670 Rev D1 (W)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_{D} = 250 \mu A$	30			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		39		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)	·	•	•	•	•
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.4	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-5		mV/°C
$R_{\text{DS(on)}}$	Static Drain–Source On–Resistance			3.3 4.2 4.4	3.7 5.0 5.5	mΩ
g _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 21 A		118		S
Dynamic	Characteristics			L		
Ciss	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		4040		pF
Coss	Output Capacitance	f = 1.0 MHz		1730		pF
Crss	Reverse Transfer Capacitance			160		pF
R _G	Gate Resistance	f = 1.0 MHz	0.2	0.9	1.5	Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 15 V$, $I_D = 1 A$,		12	21	ns
t _r	Turn–On Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		11	20	ns
t _{d(off)}	Turn–Off Delay Time			56	90	ns
t _f	Turn–Off Fall Time			68	108	ns
Q _{g(TOT)}	Total Gate Charge at V _{GS} = 10V	V _{DD} = 15 V, I _D = 21 A		58.5	82	nC
Q _{q(TOT)}	Total Gate Charge at V _{GS} = 5V			30	42	nC
Q _{gs}	Gate-Source Charge			9.5		nC
Q _{gd}	Gate-Drain Charge	_		5.5		nC
	ource Diode Characteristics	and Maximum Ratings		•		•
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2.1 A$ (Note 2)		0.7	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 21 A,		51		ns
I _{RM}	Diode Reverse Recovery Current	dl _F /dt = 100 A/µs		1.5		Α
Qrr	Diode Reverse Recovery Charge	1		37		nC

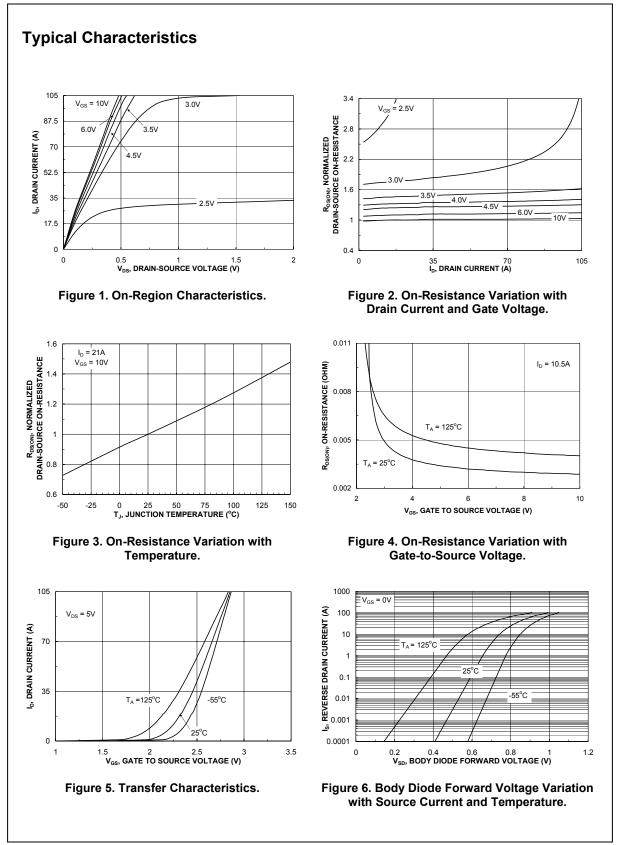
Notes:

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a) 50°/W when mounted on a 1 in² pad of 2 oz copper

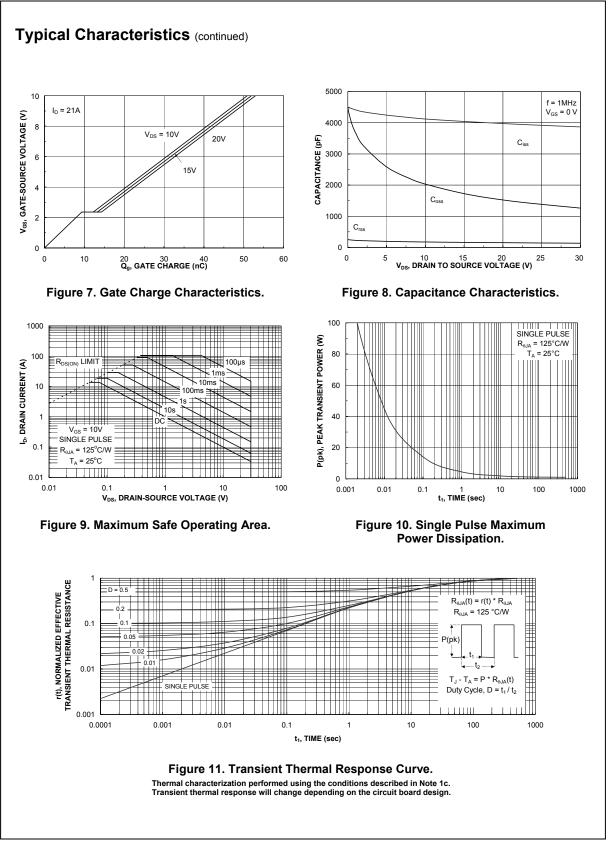
مووهه ~~~~

b) 105°/W when mounted on a .04 in² pad of 2 oz copper


c) 125°/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

 $\label{eq:linear} \begin{array}{l} \textbf{2. Pulse Test: Pulse Width < 300 \mu s, Duty Cycle < 2.0\% \\ \textbf{3. Starting T_J = 25^\circ C, L = 3mH, I_{AS} = 17A, V_{DD} = 30V, V_{GS} = 10V \\ \end{array}$


FDS8670 Rev D1 (W)

FDS8670 30V N-Channel PowerTrench® MOSFET

FDS8670 30V N-Channel PowerTrench[®] MOSFET

FDS8670 Rev D1 (W)

FDS8670 30V N-Channel PowerTrench[®] MOSFET

FDS8670 Rev D1 (W)

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACE $x^{(B)}$ Build it Now TM CorePLUS TM CROSSVOLT TM CTL TM Current Transfer Logic TM EcoSPARK [®] EZSWITCH TM * \overrightarrow{F} Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series TM FACT [®] FAST [®] FastvCore TM FlashWriter [®] *	FPS [™] FRFET [®] Global Power Resource SM Green FPS [™] e-Series [™] GTO [™] <i>i-Lo</i> [™] IntelliMAX [™] ISOPLANAR [™] MiSOPLANAR [™] MiCROCOUPLER [™] MicroFET [™] MicroPak [™] MillerDrive [™] Motion-SPM [™] OPTOLOGIC [®] OPTOPLANAR [®]	PDP-SPM [™] Power220 [®] POWEREDGE [®] Power-SPM [™] PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] SMART START [™] SPM [®] STEALTH [™] SuperFET [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8	SupreMOS [™] SyncFET [™] Figeneral The Power Franchise [®] TinyBoost [™] TinyBoost [™] TinyBoost [™] TinyLogic [®] TINYOPTO [™] TinyPOwer [™] TinyPWM [™] TinyWir [™] µSerDes [™] UHC [®] Ultra FRFET [™] UniFET [™] VCX [™]
--	--	---	--

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or system^b are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support, device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild Semiconductor. The datasheet is printed for reference infor- mation only.